Sparse Time-Frequency decomposition by adaptive basis pursuit
نویسندگان
چکیده
In our recent paper, we proposed a data-driven time-frequency analysis method. We also presented convincing numerical evidence to demonstrate the effectiveness of our method. Convergence analysis has been also carried out for periodic signals that satisfy certain scale separation property. In this paper, we propose an improved time-frequency analysis method that can be used to decompose signals that do not have good scale separation property. Our method is formulated as a nonlinear optimization problem using nonlinear basis pursuit. Unlike the classical basis pursuit where the basis is known a priori, the basis in our nonlinear basis pursuit is not known a priori. Instead, it is adapted to the signal and is determined as part of the nonlinear optimization problem. This nonlinear optimization problem is solved by using the Augmented Lagrangian Multiplier method (ALM) iteratively. We further accelerate the convergence of the ALM method in each iteration by using the fast wavelet transform. We apply our method to decompose a number of multiscale data without scale separation, including signals with noise and signals with outliers. Our results show that our method can give accurate recovery of both the instantaneous frequencies and the intrinsic mode functions even for signals that have poor or no scale separation.
منابع مشابه
On the Uniqueness of Sparse Time-Frequency Representation of Multiscale Data
In this paper, we analyze the uniqueness of the sparse time frequency decomposition and investigate the efficiency of the nonlinear matching pursuit method. Under the assumption of scale separation, we show that the sparse time frequency decomposition is unique up to an error that is determined by the scale separation property of the signal. We further show that the unique decomposition can be ...
متن کاملBeyond Coherence : Recovering Structured Time - Frequency Representations
We consider the problem of recovering a structured sparse representation of a signal in an overcomplete time-frequency dictionary with a particular structure. For infinite dictionaries that are the union of a nice wavelet basis and a Wilson basis, sufficient conditions are given for the Basis Pursuit and (Orthogonal) Matching Pursuit algorithms to recover a structured representation of an admis...
متن کاملSeismic sparse-layer reflectivity inversion using basis pursuit decomposition
Basis pursuit inversion of seismic reflection data for reflection coefficients is introduced as an alternative method of incorporating a priori information in a seismic inversion process. The inversion is accomplished by building a dictionary of functions, representing seismic reflection responses, and constituting the seismic trace as a superposition of these responses. Basis pursuit decomposi...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملBasis Pursuit for Seismic Spectral decomposition
Spectral decomposition is a powerful analysis tool used to identify the frequency content of seismic data. Many spectral decomposition techniques have been developed, each with their own advantages and disadvantages. The basis pursuit technique produces a high time frequency resolution map through formulating the problem as an inversion scheme. This techniques differs from conventional spectral...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1311.1163 شماره
صفحات -
تاریخ انتشار 2013